Subalgebra \(A^{4}_1\) ↪ \(G^{1}_2\)
3 out of 7
Computations done by the calculator project.

Subalgebra type: \(\displaystyle A^{4}_1\) (click on type for detailed printout).
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: \(\displaystyle G^{1}_2\)

Elements Cartan subalgebra scaled to act by two by components: \(\displaystyle A^{4}_1\): (6, 4): 8
Dimension of subalgebra generated by predefined or computed generators: 3.
Negative simple generators: \(\displaystyle g_{-2}+g_{-5}\)
Positive simple generators: \(\displaystyle 2g_{5}+2g_{2}\)
Cartan symmetric matrix: \(\displaystyle \begin{pmatrix}1/2\\ \end{pmatrix}\)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): \(\displaystyle \begin{pmatrix}8\\ \end{pmatrix}\)
Decomposition of ambient Lie algebra: \(\displaystyle V_{4\omega_{1}}\oplus 3V_{2\omega_{1}}\)
In the table below we indicate the highest weight vectors of the decomposition of the ambient Lie algebra as a module over the semisimple part. The second row indicates weights of the highest weight vectors relative to the Cartan of the semisimple subalgebra.
Highest vectors of representations (total 4) ; the vectors are over the primal subalgebra.\(g_{4}\)\(g_{5}+g_{2}\)\(g_{3}\)\(g_{6}\)
weight\(2\omega_{1}\)\(2\omega_{1}\)\(2\omega_{1}\)\(4\omega_{1}\)
Isotypic module decomposition over primal subalgebra (total 3 isotypic components).
Isotypical components + highest weight\(\displaystyle V_{2\omega_{1}} \) → (2)\(\displaystyle V_{4\omega_{1}} \) → (4)
Module label \(W_{1}\)\(W_{2}\)\(W_{3}\)
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. Semisimple subalgebra component.
\(-g_{5}-g_{2}\)
\(2h_{2}+3h_{1}\)
\(g_{-2}+g_{-5}\)
\(g_{3}\)
\(-g_{1}\)
\(-g_{-4}\)
\(g_{4}\)
\(-g_{-1}\)
\(-g_{-3}\)
\(g_{6}\)
\(g_{5}-g_{2}\)
\(-3h_{1}\)
\(3g_{-2}-3g_{-5}\)
\(6g_{-6}\)
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above\(2\omega_{1}\)
\(0\)
\(-2\omega_{1}\)
\(2\omega_{1}\)
\(0\)
\(-2\omega_{1}\)
\(4\omega_{1}\)
\(2\omega_{1}\)
\(0\)
\(-2\omega_{1}\)
\(-4\omega_{1}\)
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer\(2\omega_{1}\)
\(0\)
\(-2\omega_{1}\)
\(2\omega_{1}\)
\(0\)
\(-2\omega_{1}\)
\(4\omega_{1}\)
\(2\omega_{1}\)
\(0\)
\(-2\omega_{1}\)
\(-4\omega_{1}\)
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a.\(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\)\(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\)\(\displaystyle M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\)
Isotypic character\(\displaystyle M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\)\(\displaystyle 2M_{2\omega_{1}}\oplus 2M_{0}\oplus 2M_{-2\omega_{1}}\)\(\displaystyle M_{4\omega_{1}}\oplus M_{2\omega_{1}}\oplus M_{0}\oplus M_{-2\omega_{1}}\oplus M_{-4\omega_{1}}\)

Semisimple subalgebra: W_{1}
Centralizer extension: 0


Made total 338565 arithmetic operations while solving the Serre relations polynomial system.